[et_pb_section fb_built=”1″ _builder_version=”4.16″ custom_padding=”0|0px|36px|0px|false|false” global_colors_info=”{}”][et_pb_row module_class=” et_pb_row_fullwidth et_pb_row_fullwidth” _builder_version=”4.16″ width=”89%” width_tablet=”80%” width_phone=”” width_last_edited=”on|desktop” max_width=”89%” max_width_tablet=”80%” max_width_phone=”” max_width_last_edited=”on|desktop” custom_padding=”0px|0px|0|0px|false|false” make_fullwidth=”on” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.16″ custom_padding=”|||” global_colors_info=”{}” custom_padding__hover=”|||”][et_pb_text _builder_version=”4.17.4″ text_font=”Roboto|700|||||||” text_text_color=”#ffffff” header_5_font=”Roboto||||||||” header_5_text_align=”center” header_5_text_color=”#ffffff” background_color=”#213e86″ custom_padding=”17px||8px|” z_index_tablet=”500″ header_5_text_shadow_style=”preset5″ global_colors_info=”{}”]
INEQKILL: How inequality kills. Two centuries of social and spatial disparities in all-cause and cause-specific mortality in Belgium (1800-2025)
[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”4.16″ custom_padding=”0|0px|1px|0px|false|false” global_colors_info=”{}”][et_pb_row column_structure=”2_5,3_5″ make_equal=”on” admin_label=”Row” _builder_version=”4.17.4″ global_colors_info=”{}”][et_pb_column type=”2_5″ module_class=”ds-vertical-align” _builder_version=”4.16″ custom_padding=”|||” global_colors_info=”{}” custom_padding__hover=”|||”][et_pb_image src=”https://interfacedemography.be/wp-content/uploads/2022/06/Picture1-inq.png” title_text=”Picture1 – inq” _builder_version=”4.17.4″ _module_preset=”default” global_colors_info=”{}”][/et_pb_image][/et_pb_column][et_pb_column type=”3_5″ module_class=”ds-vertical-align” _builder_version=”4.16″ custom_padding=”|||” global_colors_info=”{}” custom_padding__hover=”|||”][et_pb_text _builder_version=”4.17.4″ _module_preset=”default” global_colors_info=”{}”]
The main objective of our new EOS-project INEQKILL is to analyse social and spatial differences in all-cause and cause-specific mortality in Belgium between 1800 and 2025. The timing of the epidemiologic transition in Belgium is well known (see graph 1), but we do not know how this transition occurred and varied by social groups and areas.
How did social and spatial inequalities in mortality evolve in the context of industrialisation, tertiarization, rising living standards, improved social security and medical progress? What were the effects of economic crises, epidemics and the world wars? How did these patterns vary according to age, gender and migration status? What factors at the individual household and local-regional levels can explain these differences?
These questions will be answered using multiple data sources in different work packages. More info can be found on the project’s website: https://www.ineqkill.be
[/et_pb_text][et_pb_image src=”https://interfacedemography.be/wp-content/uploads/2022/06/ineq.png” title_text=”ineq” _builder_version=”4.17.4″ _module_preset=”default” global_colors_info=”{}”][/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]