Living Near Greener Spaces is Associated with Lower Risk of Diabetes-Related Mortality in Brussels, Belgium: a 13-Year Mortality Follow-up Study

Lucía Rodríguez Loureiro; Lidia Casas Ruiz; Mariska Bauwelinc; Charlotte Noël; Christophe Vanroelen; Sylvie Gadeyne

(1) Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Belgium; (2) Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium; (3) Research Foundation Flanders (FWO), Brussels, Belgium; (4) Health Inequalities Research Group (GREDS), Universitat Pompeu Fabra, Barcelona, Spain; (5) Department of Public Health, Erasmus Medical Centre, Rotterdam, the Netherlands.
INTRODUCTION
Introduction

• Indicative evidence of a relationship between exposure to residential urban green spaces (UGS) and diabetes

Mechanisms:
• Increased opportunities for physical activity
• Restoration and stress reduction, improved mental health
• Mitigation of environmental hazards (e.g. air pollution)
• Modulation of immune responses through cell signaling inhibition

• Few studies have explored the association between UGS and diabetes-related mortality

Richardson, 2012; Xu, 2017; James, 2016; Crouse, 2017.
Study setting

• Brussels Agglomeration: ≈ 1.4 million inhabitants; 573 km².
• Functional unit in terms of living, working, trade, education, trade, cultural experience and leisure; regardless of administrative boundaries.

Objectives

• To assess the relationship between exposure to residential green spaces and diabetes-related mortality in the Brussels agglomeration (Belgium).

• To examine potential effect modification by sociodemographic and socioeconomic characteristics in this association.
METHODOLOGY
Data design

2001 Belgian Census
- Detailed demographic and socio-economic information of the total population officially residing in Belgium

National Mortality Database: Register data on migration and mortality for the follow-up period 01 October 2001 – 31 December 2014 (13.25-year follow-up)
Data design

2001 Belgian Census

- Detailed demographic and socio-economic information of the total population officially residing in Belgium

National Mortality Database: Register data on migration and mortality for the follow-up period 01 October 2001 – 31 December 2014 (13.25-year follow-up)

Health outcomes

- **Diabetes-related mortality**: ICD-10 codes E10-E14.
 1. Diabetes as the original cause of death.
 2. Diabetes as any cause of death (immediate, intermediate, original or additional).
Data design

2001 Belgian Census

National Mortality Database: Register data on migration and mortality for the follow-up period 01 October 2001 – 31 December 2014 (13.25-year follow-up)

Residential living environment

Detailed demographic and socio-economic information of the total population officially residing in Belgium

Link to residential address
Data design

2001 Belgian Census

National Mortality Database: Register data on migration and mortality for the follow-up period 01 October 2001 – 31 December 2014 (13.25-year follow-up)

Residential living environment

Exposure to residential urban green spaces (UGS)

1. **Surrounding greenness**: Normalised Difference Vegetation Index (NDVI) within a 300m buffer (30m x 30m resolution); Landsat 5.
Data design

2001 Belgian Census

National Mortality Database: Register data on migration and mortality for the follow-up period 01 October 2001 – 31 December 2014 (13.25-year follow-up)

Residential living environment

Detailed demographic and socio-economic information of the total population officially residing in Belgium

Methodology

Exposure to residential urban green spaces (UGS)

1. Surrounding greenness: Normalised Difference Vegetation Index (NDVI) within a 300m buffer (30m x 30m resolution); Landsat 5.

2. Perceived neighbourhood greenness: % of households in the statistical ward reporting very good provision of green spaces in their neighbourhood.
Covariates

SOCIODEMOGRAPHIC CHARACTERISTICS

• Age
• Gender
• Household Living Arrangement: Single; Cohabiting.
• Migrant Background: Belgian; Other High-Income Country (HIC); Low and Middle-Income Country (LMIC).

(INDIVIDUAL) SOCIOECONOMIC POSITION

• (Highest) Educational Level: Tertiary; Higher Secondary; Lower Secondary; Primary/No Formal Education.
• Housing Tenure: Owner; Tenant.

(NEIGHBOURHOOD) SOCIOECONOMIC POSITION

• Percentage of Unemployment in the Statistical Ward Among the Total Active Working Population.
FIRST OBJECTIVE: Association between the two indicators of exposure to residential UGS (surrounding and perceived neighbourhood greenness) and each outcome of diabetes-related mortality (both diabetes as the original cause of death and diabetes as any cause of death)

• Cox proportional hazards models using age as the underlying time scale.
 • Hazard Ratios (HR) and 95% Confidence Intervals (95%CI)
 • Models adjusted by gender, migrant background, educational level, housing tenure, household living arrangement, PM$_{2.5}$ and neighbourhood SEP
 • Confounders included by stepwise entry

SECOND OBJECTIVE: Effect modification by demographic and socioeconomic characteristics

• Effect modification analyses
 • Interaction terms (UGS ## demographic and socioeconomic characteristics) and stratification
GREEN & QUIET BRUSSELS

RESULTS
Results

Table 1. Baseline characteristics of the study population and mortality and migration during follow-up (2001-2014).

<table>
<thead>
<tr>
<th></th>
<th>Women (N = 253,533)</th>
<th>Men (N = 220,832)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age at Baseline, mean (SD)</td>
<td>56.1 (11.1)</td>
<td>57.2 (11.5)</td>
</tr>
<tr>
<td>Diabetes as the Original Cause of Death, N (%)</td>
<td>684 (0.3)</td>
<td>661 (0.3)</td>
</tr>
<tr>
<td>Diabetes as Any Cause of Death, N (%)</td>
<td>2,442 (1.0)</td>
<td>2,899 (1.3)</td>
</tr>
<tr>
<td>Emigrations, N (%)</td>
<td>11,161 (4.4)</td>
<td>13,065 (5.9)</td>
</tr>
<tr>
<td>Migrant Background, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgian</td>
<td>191,294 (75.5)</td>
<td>160,906 (72.9)</td>
</tr>
<tr>
<td>Other HIC</td>
<td>38,220 (15.1)</td>
<td>34,147 (15.5)</td>
</tr>
<tr>
<td>LMIC</td>
<td>24,019 (9.5)</td>
<td>25,779 (11.7)</td>
</tr>
<tr>
<td>Educational Level, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>67,692 (26.7)</td>
<td>73,842 (33.4)</td>
</tr>
<tr>
<td>Higher Secondary</td>
<td>57,545 (22.7)</td>
<td>46,226 (20.9)</td>
</tr>
<tr>
<td>Lower Secondary</td>
<td>63,810 (25.2)</td>
<td>50,725 (23.0)</td>
</tr>
<tr>
<td>Primary/No education</td>
<td>64,486 (25.4)</td>
<td>50,039 (22.7)</td>
</tr>
<tr>
<td>Housing Tenure, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>168,059 (66.3)</td>
<td>147,311 (66.7)</td>
</tr>
<tr>
<td>Tenant</td>
<td>85,474 (33.7)</td>
<td>73,521 (33.3)</td>
</tr>
<tr>
<td>Household Living Arrangement, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>67,296 (26.5)</td>
<td>45,638 (20.7)</td>
</tr>
<tr>
<td>Cohabiting</td>
<td>153,658 (60.6)</td>
<td>164,698 (74.6)</td>
</tr>
<tr>
<td>Other</td>
<td>32,579 (12.9)</td>
<td>10,496 (4.8)</td>
</tr>
</tbody>
</table>

- Study population of **474,365** individuals between 40 and 80 years old and officially residing in the Brussels agglomeration in 2001.
Results

Table 2. Median, interquartile range (IQR), and correlation matrix between indicators of the residential living environment and area-level SEP. Brussels agglomeration, 2001-2014.

<table>
<thead>
<tr>
<th></th>
<th>Median (IQR)</th>
<th>Perceived neighbourhood greenness</th>
<th>PM$_{2.5}$ [μg/m3]</th>
<th>% Unemployment in the statistical ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrounding greenness</td>
<td>0.5 (0.4 - 0.6)</td>
<td>27.5 (11.5 - 40.8)</td>
<td>18.9 (18.2 - 19.5)</td>
<td>13.0 (9.4 - 19.2)</td>
</tr>
<tr>
<td>Perceived neighbourhood greenness</td>
<td>1.000</td>
<td>0.7952*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$ [μg/m3]</td>
<td>-0.6498*</td>
<td>-0.4998*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>% Unemployment in the statistical ward</td>
<td>-0.6758*</td>
<td>-0.5507*</td>
<td>0.4688*</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* $p < 0.001$
Results

Figure 1. Stepwise adjustment of the associations (HR) and confidence intervals (95%CI) between IQR increments of surrounding and perceived neighborhood greenness and diabetes-related mortality (both as the original cause of death and as any cause of death). Brussels agglomeration, 2001-2014.

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Surrounding greenness IQR: 0.2; Perceived neighbourhood greenness IQR: 29.3.

M1: crude model (age as the underlying time scale)
M2: M1 + gender
M3: M2 + migrant background
M4: M3 + educational level + housing tenure + household living arrangement
M5: M4 + PM$_{2.5}$
M6: M5 + neighbourhood SEP
Results

INTERACTION TERMS between each residential UGS indicator and gender, migrant background, educational level and neighbourhood SEP were included in each fully adjusted model for both diabetes-related mortality outcomes.

- No significant interaction with migrant background and educational level was found.

- **Diabetes as the original cause of death**
 - *Surrounding greenness*: Significant interaction with neighbourhood SEP.
 - *Perceived neighbourhood greenness*: Significant interaction with gender.

- **Diabetes as any cause of death**
 - *Surrounding greenness and perceived neighbourhood greenness*: Significant interaction with gender.
Figure 2. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of surrounding greenness and diabetes as the original cause of death, by quartiles of neighbourhood SEP (% of unemployment in the statistical area). Brussels agglomeration, 2001-2014.

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by gender, migrant background, educational level, housing tenure, household living arrangement and PM$_{2.5}$. Surrounding greenness IQR: 0.2. Quartiles of neighbourhood SEP (% of unemployment in the statistical ward): Q1 (1.4%-9.4%); Q2 (9.4%-13%); Q3 (13%-19.2%); Q4 (19.3%-56.3%).
Results

Figure 3. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of perceived neighbourhood greenness and diabetes as the original cause of death, by gender. Brussels agglomeration, 2001-2014.

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by migrant background, educational level, housing tenure, household living arrangement and PM$_{2.5}$ and neighbourhood SEP.

Perceived neighbourhood greenness IQR: 29.3.
Results

Figure 4. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of *surrounding and perceived neighbourhood greenness* and *diabetes as any cause of death*, by gender. Brussels agglomeration, 2001-2014.

Diabetes as any cause of death

Surrounding greenness

Perceived neighbourhood greenness

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by migrant background, educational level, housing tenure, household living arrangement and PM$_{2.5}$ and neighbourhood SEP. Surrounding greenness IQR: 0.2; Perceived neighbourhood greenness IQR: 29.3.
Limitations

• Unable to control for lifestyle factors
• No time-varying information on covariates available
• Residential address at baseline
• Exposure misclassification (only based on residential address)
• No information on quality of green spaces

Strengths

• Large register dataset
• High resolution living environment indicators
• Individual exposure
• Subjective indicator of residential urban green space
• Long follow-up (13.25 years)
CONCLUSIONS
Conclusions

• **Living near greener spaces** might help *reduce the risk of diabetes-related mortality*.

• Higher levels of **surrounding greenness** near the residence might *especially reduce the risk* of death from diabetes as the original cause in *deprived neighbourhoods*.

• **Perceived neighbourhood greenness** is inversely associated with both indicators of diabetes-related mortality among *women*, but not among men.

• Further research is needed in order to elucidate the mechanisms underlying these associations.
Living Near Greener Spaces is Associated with Lower Risk of Diabetes-Related Mortality in Brussels, Belgium: a 13-Year Mortality Follow-up Study

Lucía Rodríguez Loureiro1; Lidia Casas Ruiz2,3; Mariska Bauwelinck1,3; Charlotte Noël1; Christophe Vanroelen1,4; Sylvie Gadeyne1,5

(1) Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Belgium; (2) Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium; (3) Research Foundation Flanders (FWO), Brussels, Belgium; (4) Health Inequalities Research Group (GREDS), Universitat Pompeu Fabra, Barcelona, Spain; (5) Department of Public Health, Erasmus Medical Centre, Rotterdam, the Netherlands.