

32nd Annual Conference of the International Society for Environmental Epidemiology August 25th, 2020

empowering research

Living Near Greener Spaces is Associated with Lower Risk of Diabetes-Related Mortality in Brussels, Belgium: a 13-Year Mortality Follow-up Study

Lucía Rodríguez Loureiro¹; Lidia Casas Ruiz^{2,3}; Mariska Bauwelinck^{1,3}; Charlotte Noël¹; Christophe Vanroelen^{1,4}; Sylvie Gadeyne^{1,5}

(1) Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Belgium; (2) Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium; (3) Research Foundation Flanders (FWO), Brussels, Belgium; (4) Health Inequalities Research Group (GREDS), Universitat Pompeu Fabra, Barcelona, Spain; (5) Department of Public Health, Erasmus Medical Centre, Rotterdam, the Netherlands.

INTRODUCTION

Introduction

 Indicative evidence of a relationship between exposure to residential urban green spaces (UGS) and diabetes

Astell-Burt, 2014; Bodicoat, 2014; Ngom, 2016; den Braver, 2018.

- Mechanisms:
 - Increased opportunities for physical activity
 - Restoration and stress reduction, improved mental health
 - Mitigation of environmental hazards (e.g. air pollution)
 - Modulation of immune responses through cell signaling inhibition

Nieuwenhuijsen, 2017.

 Few studies have explored the association between UGS and diabetes-related mortality

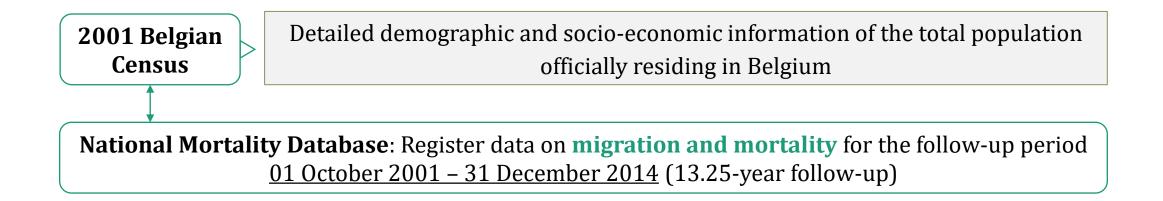
Richardson, 2012; Xu, 2017; James, 2016; Crouse, 2017.

Introduction

Turnhout Bruge amet onkern stadsgewest = morfologische agglomeratie · Grens van de operationele agglomeratie Charlier J., Van Hecke E., Luyten S. EGEFA-ULg, ISEG-KULeuven, 2006 kilometer

Luyten, S., Van Hecke, E. (2001). Working Paper "The Belgian City Regions". STATBEL: Brussels.

Study setting


- Brussels Agglomeration: $\simeq 1.4$ million inhabitants; 573 km².
- Functional unit in terms of living, working, trade, education, trade, cultural experience and leisure; regardless of administrative boundaries.


Objectives

- To assess the relationship between exposure to residential green spaces and diabetesrelated mortality in the Brussels agglomeration (Belgium).
- To examine potential effect modification by sociodemographic and socioeconomic characteristics in this association.

METHODOLOGY

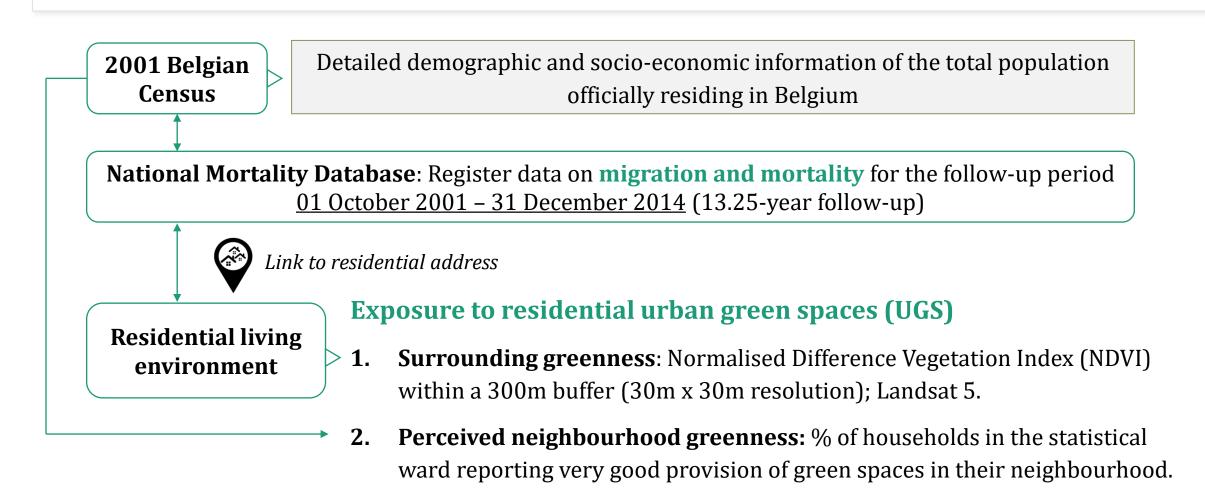
Health outcomes

- **Diabetes-related mortality:** ICD-10 codes E10-E14.
 - 1. Diabetes as the **original** cause of death.
 - 2. Diabetes as *any* cause of death (**immediate**, **intermediate**, **original or additional**).

2001 Belgian

Census

Detailed demographic and socio-economic information of the total population officially residing in Belgium


National Mortality Database: Register data on **migration and mortality** for the follow-up period <u>01 October 2001 – 31 December 2014</u> (13.25-year follow-up)

Link to residential address

Residential living environment

- **Exposure to residential urban green spaces (UGS)**
- **1. Surrounding greenness**: Normalised Difference Vegetation Index (NDVI) within a 300m buffer (30m x 30m resolution); Landsat 5.

Covariates

SOCIODEMOGRAPHIC CHARACTERISTICS

- Age
- Gender
- Household Living Arrangement: Single; Cohabiting.
- Migrant Background: Belgian; Other High-Income Country (HIC); Low and Middle-Income Country (LMIC).

(INDIVIDUAL) SOCIOECONOMIC POSITION

- (Highest) Educational Level: Tertiary; Higher Secondary; Lower Secondary; Primary/No Formal Education.
- Housing Tenure: Owner; Tenant.

(NEIGHBOURHOOD) SOCIOECONOMIC POSITION

• **Percentage of Unemployment** in the Statistical Ward Among the Total Active Working Population.

Statistical analyses

FIRST OBJECTIVE: Association between the two indicators of exposure to **residential UGS** (surrounding and perceived neighbourhood greenness) and each outcome of **diabetes-related mortality** (both diabetes as the original cause of death and diabetes as *any* cause of death)

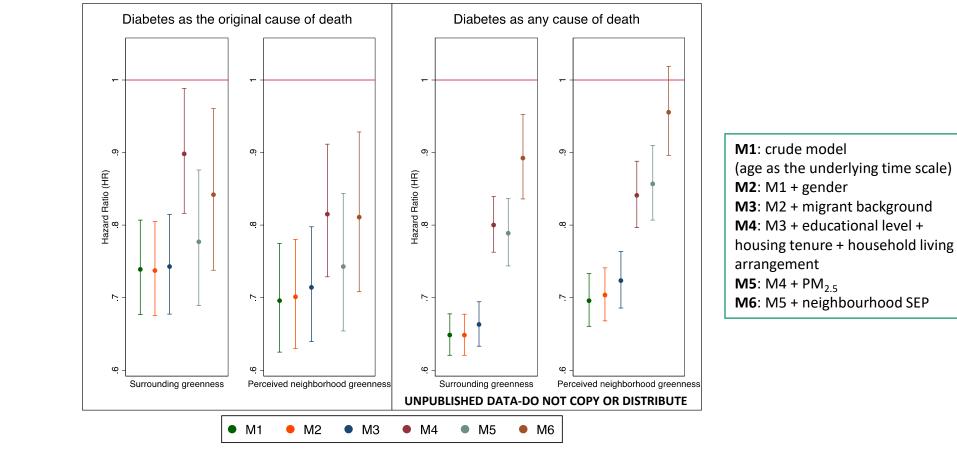
- Cox proportional hazards models using age as the underlying time scale.
 - Hazard Ratios (HR) and 95% Confidence Intervals (95%CI)
 - Models adjusted by gender, migrant background, educational level, housing tenure, household living arrangement, PM_{2.5} and neighbourhood SEP
 - Confounders included by stepwise entry

SECOND OBJECTIVE: Effect modification by **demographic and socioeconomic** characteristics

- Effect modification analyses
 - Interaction terms (UGS ## demographic and socioeconomic characteristics) and stratification

RESULTS

Table 1. Baseline characteristics of the study population and mortality and migration during follow-up (2001-2014).


	Women (N = 253,533)		Men (N = 220,832)	
Mean Age at Baseline, mean (SD)	56.1	(11.1)	57.2	(11.5)
Diabetes as the Original Cause of Death, N (%)	684	(0.3)	661	(0.3)
Diabetes as Any Cause of Death, N (%)	2,442	(1.0)	2,899	(1.3)
Emigrations, N (%)	11,161	(4.4)	13,065	(5.9)
Migrant Background, N (%)				
Belgian	191,294	(75.5)	160,906	(72.9)
Other HIC	38,220	(15.1)	34,147	(15.5)
LMIC	24,019	(9.5)	25,779	(11.7)
Educational Level, N (%)				
Tertiary	67,692	(26.7)	73,842	(33.4)
Higher Secondary	57,545	(22.7)	46,226	(20.9)
Lower Secondary	63,810	(25.2)	50,725	(23.0)
Primary/No education	64,486	(25.4)	50,039	(22.7)
Housing Tenure, N (%)				
Owner	168,059	(66.3)	147,311	(66.7)
Tenant	85,474	(33.7)	73,521	(33.3)
Household Living Arrangement, N (%)				
Single	67,296	(26.5)	45,638	(20.7)
Cohabiting	153,658	(60.6)	164,698	(74.6)
Other	32,579	(12.9)	10,496	(4.8)

• Study population of **474,365** individuals between 40 and 80 years old and officially residing in the Brussels agglomeration in 2001.

Table 2. Median, interquartile range (IQR), and correlation matrix between indicators of the residential living environment and area-level SEP. Brussels agglomeration, 2001-2014.

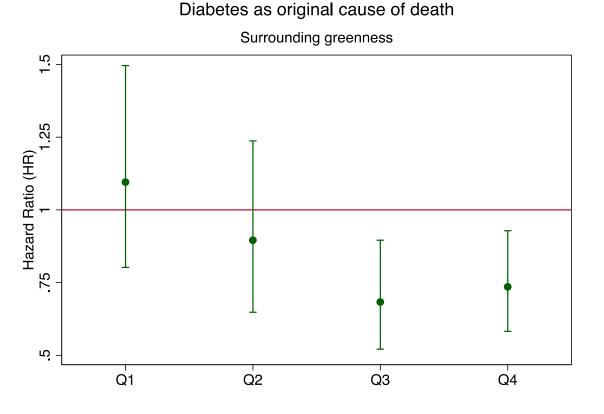
	Surrounding greenness (NDVI within a 300m buffer)	Perceived neighbourhood greenness	PM _{2.5} [μg/m3]	% Unemployment in the statistical ward
Median	0.5	27.5	18.9	13.0
(IQR)	(0.4 - 0.6)	(11.5 - 40.8)	(18.2 - 19.5)	(9.4 - 19.2)
Surrounding greenness (NDVI within a 300m buffer)	1.000			
Perceived neighbourhood greenness	0.7952*	1.000		
PM _{2.5} [μg/m3]	-0.6498*	-0.4998*	1.000	
% Unemployment in the statistical ward	-0.6758*	-0.5507*	0.4688*	1.000
[*] p < 0.001				

Figure 1. Stepwise adjustment of the associations (HR) and confidence intervals (95%CI) between IQR increments of surrounding and perceived neighborhood greenness and diabetes-related mortality (both as the original cause of death and as any cause of death). Brussels agglomeration, 2001-2014.

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Surrounding greenness IQR: 0.2; Perceived neighbourhood greenness IQR: 29.3.

INTERACTION TERMS between each residential UGS indicator and **gender, migrant background, educational level and neighbourhood SEP** were included in each fully adjusted model for both diabetes-related mortality outcomes.

• No significant interaction with migrant background and educational level was found.

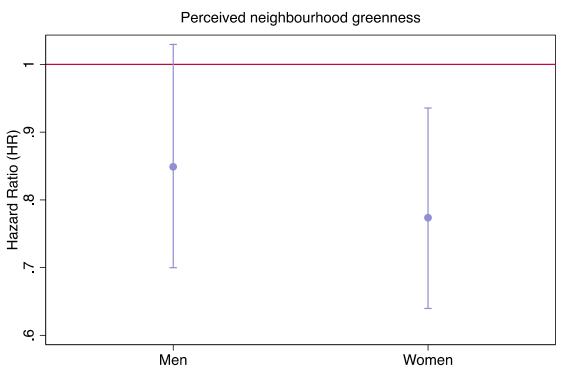

Diabetes as the original cause of death

- Surrounding greenness: Significant interaction with neighbourhood SEP.
- Perceived neighbourhood greenness: Significant interaction with gender.

Diabetes as any cause of death

• Surrounding greenness and perceived neighbourhood greenness: Significant interaction with gender.

Figure 2. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of **surrounding greenness** and **diabetes as the original cause of death**, **by quartiles of neighbourhood SEP** (% of unemployment in the statistical area). Brussels agglomeration, 2001-2014.



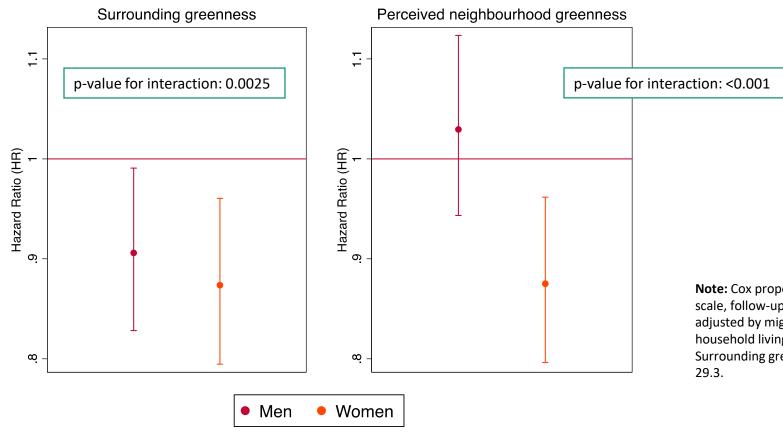
p-value for interaction: 0.0347

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by gender, migrant background, educational level, housing tenure, household living arrangement and PM_{2.5}. Surrounding greenness IQR: 0.2.

Quartiles of neighbourhood SEP (% of unemployment in the statistical ward): Q1 (1.4%-9.4%); Q2 (9.4%-13%); Q3 (13%-19.2%); Q4 (19.3%-56.3%).

Figure 3. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of perceived neighbourhood greenness and diabetes as the original cause of death, by gender. Brussels agglomeration, 2001-2014.

Diabetes as original cause of death


p-value for interaction: 0.0248

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by migrant background, educational level, housing tenure, household living arrangement and PM_{2.5} and neighbourhood SEP.

Perceived neighbourhood greenness IQR: 29.3.

Figure 4. Associations (HR) and confidence intervals (95%CI) of the association between IQR increments of surrounding and perceived neighbourhood greenness and diabetes as any cause of death, by gender. Brussels agglomeration, 2001-2014.

Diabetes as any cause of death

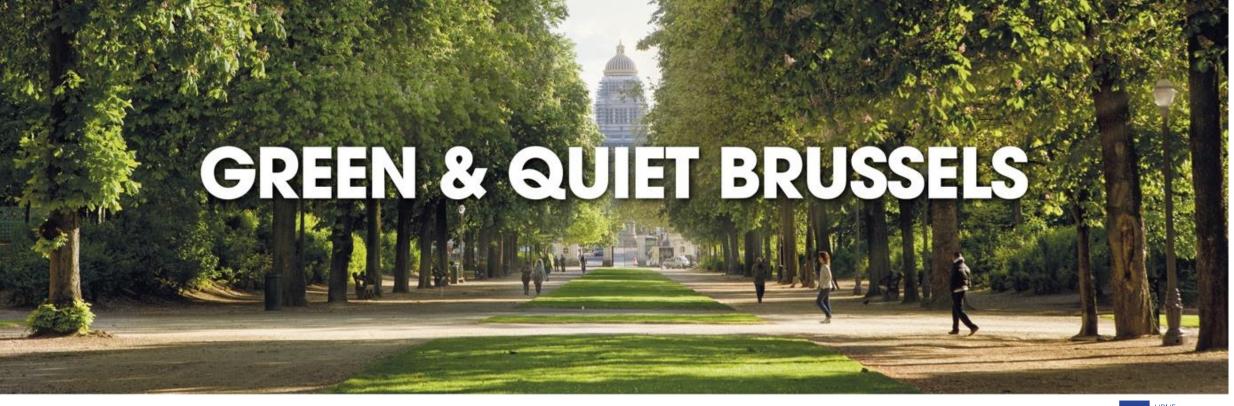
UNPUBLISHED DATA-DO NOT COPY OR DISTRIBUTE

Note: Cox proportional hazards models using age as the underlying time scale, follow-up period 1st October 2001 – 31st December 2014. Model adjusted by migrant background, educational level, housing tenure, household living arrangement and PM_{2.5} and neighbourhood SEP. Surrounding greenness IQR: 0.2; Perceived neighbourhood greenness IQR: 29.3.

Limitations

Strengths

- Unable to control for lifestyle factors
- No time-varying information on covariates available
- Residential address at baseline
- Exposure misclassification (only based on residential address)
- No information on quality of green spaces


- Large register dataset
- High resolution living environment indicators
- Individual exposure
- Subjective indicator of residential urban green space
- Long follow-up (13.25 years)

CONCLUSIONS

Conclusions

- Living near greener spaces might help reduce the risk of diabetes-related mortality.
- Higher levels of **surrounding greenness** near the residence might **especially reduce the risk** of death from diabetes as the original cause in **deprived neighbourhoods**.
- **Perceived neighbourhood greenness** is inversely associated with both indicators of diabetesrelated mortality among **women**, but not among men.
- Further research is needed in order to elucidate the mechanisms underlying these associations.

32nd Annual Conference of the International Society for Environmental Epidemiology August 25th, 2020

empowering research

Living Near Greener Spaces is Associated with Lower Risk of Diabetes-Related Mortality in Brussels, Belgium: a 13-Year Mortality Follow-up Study

Lucía Rodríguez Loureiro¹; Lidia Casas Ruiz^{2,3}; Mariska Bauwelinck^{1,3}; Charlotte Noël¹; Christophe Vanroelen^{1,4}; Sylvie Gadeyne^{1,5}

(1) Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Belgium; (2) Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium; (3) Research Foundation Flanders (FWO), Brussels, Belgium; (4) Health Inequalities Research Group (GREDS), Universitat Pompeu Fabra, Barcelona, Spain; (5) Department of Public Health, Erasmus Medical Centre, Rotterdam, the Netherlands.